A neural adaptive level set method for wildland forest fire tracking
نویسندگان
چکیده
منابع مشابه
Modeling wildland fire propagation with level set methods
Level set methods are versatile and extensible techniques for general front tracking problems, including the practically important problem of predicting the advance of a firefront across expanses of surface vegetation. Given a rule, empirical or otherwise, to specify the rate of advance of an infinitesimal segment of firefront arc normal to itself (i.e., given the firespread rate as a function ...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملA BINARY LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
This paper proposes an effective algorithm based on the level set method (LSM) to solve shape and topology optimization problems. Since the conventional LSM has several limitations, a binary level set method (BLSM) is used instead. In the BLSM, the level set function can only take 1 and -1 values at convergence. Thus, it is related to phase-field methods. We don’t need to solve the Hamilton-Jac...
متن کاملAdaptive Level Set Method for Mesh Evolution
A narrow-band-based adaptive level set method is proposed for mesh evolution in this paper. In the preprocessing step, the portions of the mesh with high curvature are detected and clustered as fine geometric details. Then the fine grids with optimal orientations are defined for each detected portions, while the coarse grid is chosen for global evolution. The solutions on different scale grids ...
متن کاملA Novel Adaptive Level Set Segmentation Method
The adaptive distance preserving level set (ADPLS) method is fast and not dependent on the initial contour for the segmentation of images with intensity inhomogeneity, but it often leads to segmentation with compromised accuracy. And the local binary fitting model (LBF) method can achieve segmentation with higher accuracy but with low speed and sensitivity to initial contour placements. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of computer applications in technology
سال: 2021
ISSN: ['0952-8091', '1741-5047']
DOI: https://doi.org/10.1504/ijcat.2021.10045755